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8ECTION I

INTRODUCTION

Engine components have traditionally been designed using a crack initiation criterion.
This approach has been very successful from a safety standpoint, but the conservatism inherent
in this method has resulted in poor utilization of the intrinsic life of the component. The
development of high temperature fracture mechanics has permitted basing residual life analyses
on a crack propagation criterion. Using this approach, lives from a specifed defect size can be
calculated and combined with periodic inspection to determine component retirement.

Propagation analyses classically employed in residual life predictions are deterministically
based. They typically account for materials scatter by the incorporation of a safety factor. A
more rigorous treatment of materials scatter is necessary to permit maximum utilization of
component life.

The objective of this program was to develop a methodology capable of incorporating the
scatter observed in crack growth data into component residual life analyses. Such a methodology
is desired for use in damage-tolerant and retirement-for-cause (RFC) concepts. This objective
included: identification of the distribution functions which best describe crack growth rate
(da/dn) behavior; characterization of fatigue-crack progagation (FCP) controlling parameters as
to their effects on crack growth rate variability; examination of the correlations between this
variability and propagation life distributions; and development of a generic methodology
applicable to all engine materials, although particular program emphasis was placed on IN100,
Waspaloy, and Ti 6-2-4-6.

Two fr-. ire mechanics-based statistical models for fatigue crack growth damage
accumulation in engine materials were proposed and investigated (Reference 1). These models
were based on hyperbolic sine crack growth rate functions developed by Pratt & Whitney
Aircraft (Reference 2). Test results of IN100 (a superalloy used in the F100 engine) at various
elevated temperatures, loading frequencies, stress ratios, etc., were compiled and analyzed
statistically. The statistical distributions of (1) crack growth rate; (2) propagation life to reach
any given crack size; and (3) crack size at any service life, were derived and reported. It was
demonstrated that the correlation between the IN100 test results and the two statistical models
was very good.

In this report, the lognormal statistical model (Reference 1) is extended to the case of
spectrum loading. Test results for IN100 under block type loading are generated and used to
evaluate the capability of this model for predicting the statistical distributions of (1) the life to
reach any given crack size; and (2) the crack size at any given service life. A good correlation is
shown between the model and the test results.

The lognormal statistical model is also applied to a power law (linear) crack growth rate
function (i.e., Paris equation). Test results for IN100 under various conditions used to evaluate
the hyperbolic sine function (Reference 1) are also used to eval,.iate the Paris function. This
model is only applicable within a certain range of stress intensity and care should be exercised in
its application. The Paris model proves to be mathematically simple for practical engineering
applications.

Available fatigue crack growth rate data for Ti 6-2-4-6 and Waspaloy under various test
conditions are also analyzed statistically. The lognormal statistical model, along with either the
Paris or hyperbolic sine crack growth rate function, is shown to corre!ate well with the test
results.



The lognormal model, using both the hyperbolic sine and the Paris equations, is applied to

the homogeneous data set of Virkler, et al. (References 3 and 4). It is shown that the Paris
relation does not provide a reasonable representation of this data set. Finally, a new statistical
theory is proposed for the analysis of fatigue crack propagation. This theory is based on the
concept of fracture mechanics and random processes. Exawples are presented to demonstrate
the application of the new theory using available test results.
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SECTION II

FAT;GUE CRACK GROWTH UNDER SPECTRUM LOADING CONDITIONS

Two statistical fracture mechanics-based models for predicting the fatigue crack propaga-
tion life or engine materials under any single test condition have been proposed and investigated
in Reference 1. These models are based on the hyperbolic sine crack growth rate function
developed by Pratt & Whitney Aircraft. It has been demonstrated that the correlations between
the proposed statistical models and the test results are very good.

A single test condition is defined by a single constant value of each of the following
parameters: temperature T, loading frequency Y, stress ratio R and maximum load P,.. Service
loading spectra to engine components, however, consist of variable histories of temperature T,
frequency Y, loading magnitude R and P.., and holding time Tb. The objectives of this section
are: (1) to extend a statistical model proposed in Reference 1 for any single test condition to be
capable of predicting the fatigue crack propagation of engine materials under spectrum loadings,
(2) to conduct experimental tests using IN100 compact tension specimens subject to loading
spectra in order to generate statistically meaningful data, and (3) to correlate the test results
with the proposed statistical model for verification purposes.

1. Theoretical Model
/

rhe lognormal crack growth rate model proposed in Reference 1 for a single test condition
is expressed as

Y - Clsinh[Cg(X+CA)] + C4 + Z (1)

in which C1 is a material constant, C., C, and C4 are functions of test conditions (T, P, R) and
da

Y -log- , X--logK (2)

where AK is the stress intensity range. In Equation 1, Z is a normal random variable with zero
mean and standard deviation o, that also depends on the test conditions (see Reference 1).

In order to extend the statistical model given by Equation 1 to account for the crack
propagation under spectrum loadings, the composition of loading spectra will be described as
follows: A loading spectrum is assume I to consist of repeated identical cycle blocks (or missions
or duty cycles). Each cycle block (or duty cycle) is composed of m different segments (or m test
conditions). Each segment or test condition is defined by constant values of temperature T,
loading frequency v, stress ratio R, maximum load P." and numbers of load cycles n. Therefore,
the jth segment in one cycle block (or duty cycle) can be denoted by (T1, Yj, Rý, Pj, nj) whereas
one cycle block consists of (Tj, Pj, Rj, Pica, nj) for j =1,2,...,m, as schematically shown in Figure 1.

For the jth test condition, or segnient, in one cycle block, it follows from Equation 1 that

-iYj - C inh[C2j(X+C2 j)I + C4j + Zj ; j-1,2,...,m (3)

in which Z is a normal random variable with zero mean and standard deviation a. Values of C•,
C31, C41 and a. for different test conditions are given in Reference 1.

3
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Figure 1. Representation of One Cycle Block

Since Zj is a statistical variable, a specimen having a faster crack growth rate will preserve
it over the entire crack propagation life in the jth test condition, and the variability of Zj is
exclusively contributed by the material variability (loading is deterministic) as described in
Reference 1. Hence, under spectrum loadings Zj for jfi,2,3,,..,m are completely correlated not
only in one cycle block but also over the entire crack propagation life. Consequently, Equation 5
can be integrated segment-by-segment not ordy in one cycle block but also over the entire
propagation life to obtain the crack length a(n) as a function of the number of load cycles, n (or
cycle blocks).

For simplicity, the crack propagation in the first cycle block is illustrated by the following.
Let zj, be the y percentile of the normal random variable Z, associated with the jth segment.

oy% - P[Zj>zh] - 1 - 6(z1/C.-j)

in which 4 ( ) is the standardized normal distribution function and a, is the standard deviation
of Zj. The determination of r was described in Reference 1.

The y percentile, z,, of Zj can be obtained from Equation 4 as

zjY - J-l-' (1 - y %) for jl,2,...,m

where - () is the inverse standardized normal distribution function.

4
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The y percentile of the crack growth rate for the jth segment, denoted by Y,, follows from
Equation 3 as

Yh - CIsinh[C~j(X + Caj)] + C4J + zh for j-1,2,...,m (6)
Then, Equation 6 can be integrated segment-by-segment to yield the y percentile of the crack
length a7 (n) versus the number of load cycles n as follows:

a,(n,) - a, + E A+",

,a(n, + n2) - aY (n) + Aa(7) k-I (7)

a, n,. a, nn + ÷ Aa.J-L iI- k-I

in which a. is the initial crack size, a7 (n1) is the y percentile crack length after the first segment
that consists of n, load cycles, and Aal.k is the increment of the crack length during the kth load
cycle in the first segment which is computed numerically using Equation 6 for j-I as follows:

Y1, - C s, inh [C gi(X + C o.)] + C41 + z j, (8)

In Equation 8, z, is determined from Equation 5 with j-1. Other notations appearing in
Equation 7 are self-exp;anatory for segment by segment numerical integrations.

Repeating numerical integrations similar to Equation 7 and using appropriate initial crack
lengths for each segment and cycle block, we obtain one -y percentile for the crack length, a T (n),
as a function of load cycles n. Furthermore, by varying values of 'Y, we obtain the distribution of
the crack length as a function of load cycles as shown in Figure 2. It should be noted that the
numerical integration to generate a set of a7 (n) is deterministic, straightforward, and very
simple.

The approach described above recognizes the difference of the statistical dispersion of the
crack growth rate, da/dn, for each segment (or test condition). However, since the spectrum
loading is idealized by repeated identical cycle blocks, it may be reasonable to average the
statistical dispersion of the crack growth rate for each segment over one cycle block and to
approximate the statistical dispersion of the crack growth rate for one cycle block by such an
average value. Such an approximate approach is described in the following:

The coefficient of variation of the crack growth rate Vj in the jth segment is related to Y,S~ through

Vj -[e(1h10)' 1129
(9)

* Then, the coefficient of variation, V, of the crack growth rate for one cycle block is
approximated by the weighted average of Vj associated with all segments in one cycle block, i~e,,

V • Vj nj/I njJ.1 J-1 (10)
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and Equation 3 is approximated by

Yj - C, sinh [Cj(X+C3 j)] + C~j + Z

in which Z is a normal random variable with zero mean and standard deviation a, which is
related to V (Equation 10) through

- f +T /nio (12)

1% 10% 25% 50% 75% 90% 95%

a;

Cycles, n

FD 25MU

Figure 2. -y Percentiles of Crack Length Versus Number of Cycles

Therefore, the statistical dispersion of the crack growth rate over the entire loading
spectrum is characterized, in approximation, by the random variable Z.

Applying the same procedures described previously, with all Z (j=1,2,...,m) being replaced
by Z, one dan obtain the distribution of the craok length as a function of load cycles shown in
Figure 2.

To account for the scatter of crack propagation life in the prediction of engine components,
two distributions are of practical importance: (1) the distribution FN(.1)(n) of the propagation
life N(a1) to reach any given crack length a, (including the critical crack length), and (2) the
distribution, F..()(x), of the crack length a(n) after any specific number, n, of load cycles, In fact,
the distribution of the crack length as a function of load cycles shown in Figure 2 contains all the
information mentioned above. For instance, by drawing a horizontal line through any specific
crack length a, in Figure 2, one obtains the distribution, FN(s,)(n), of the number of load cycles
to reach that crack length. Likewise, the distribution, F.1 .)(x), of the crack length a(n) after a
given number, n, of load cycles can be obtained by drawing a vertical line through n in Figure 2.

A computer program based on the above theoretical model (Equations 6-8) has been
established to predict the crack growth damage accumulation for any given loading spectrum.

0.. :



No attempt was made in this program to account for retardation or acceleration effects,
although the statistical model developed can be modified to take these effects into account.

2. Experimental Program

An experimental test program has been carried out in order to verify the capability of the
proposed statistical model in predicting the crack propagation behavior of engine materials
under spectrum loading, The specimens used were ASTM compact tension specimens with a
thickness (B) of 0,5 inches (12.7 mm) and width (W) of 2.5 inches (63,5 mm). The initial flaw
size (ao) is 0,5 inches (12.7 mm) and the final flaw size (as) is 2.0 inch (60,8 mm).

The spectrum loading employed wrn composed of repeated block loading (or cycle block)
consisting of four test conditions (segmsxt. as shown in Figure 3. Each segment was applied for
1,000 cycles with the next test condition in esccession. The entire block was repeated after test
condition number 4. This procedure was contin aed until specimen fracture occurred.

Test Test Test Test
Condition Condition Condition Condition

1 ,,, 2 _ _ 3 _ • 4

Pmax

Load, -P

Start Over

Cycles, n

Test Condition 1 1200 0 F, 10 cpm, R - 0,1 1,000 Cycles
Test Condition 2 13500F, 10 opm, R = 0.1 1,000 Cycles
Test Condition 3 1200 0 F, 10 cpm, R A 0,5 '1,000 Cycles
Test Condldon 4 1000 0 F, 10 cpm, R - 0,1 1,000 Cycles

FD 247364

Figure 3. Laboratory Spectrum Te'st Loadi,ig Conditiona for IN100
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In one block loading, the maximum load, Pm, for each segment was fixed at 2.4 kips
(10.7 kn) with all positive stress ratios, R, in order to eliminate the need for consideration of
retardation or acceleration effects due to overloads or underloads. The results of twelve tests are
summarized in Table 1, and displayed in Figure 4. A complete listing of these tests is shown in
the Appendix. The three solid curves shown in Figure 4 are the theoretical predictions that will
be described later.

TABLE 1. VERIFICATION TEST RESULTS FOR
IN100

Final
Crack Cycles to

Specimen Length Failure Cycles at
No. ao N 1.4 inches

1. 2396 1.74 100,000 97,500
2. 2W97 1.68 65,000 62,000
3. 2398 1.68 68,000 65,800
4. 2399 1.43 73,000 72,800
5. 240 1.84 70,000 68,500
6, 2401 1.48 97,000 96,500
7. 2402 1.63 68,000 82,000
8, 2403 1.63 75,000 73.300
9, 2404 1.59 115,000 113,600
10. 2408 1.41 81,000 81,000
11. 2406 1.53 81,000 80,000
12, 2407 1.45 85,000 84,500

Failure: Mean Life (N) - 82,900
Standard Deviation - 14,800
Moan Life at 1.4 in. - 81,500
Standard Deviation - 15,000

For theoretical predictions the parameter values C2, Caj and C,,, as well as the standard
deviation a4, of Z, under each test condition (or segment) in one block loading, Figure 3, have
been estimated using the method of maximum likelihood in Reference 1. The results are shown
in Table 2 along with the total number of test specimens used. The parameter C, is a material
constant which is equal to 0.5 for IN100, Note that the parameter values presented in Table 2
were estimated using compiled IN100 crack growth rate data, which wore generated over a long
period of time for different purposes (Reference 1). The total number of test specimens under
each test condition is very small. Even with such a small sample size, the specimen dimensions,
the initial and final flaw sizes, and the maximum cyclic load for each test specimen are all
different. Thus, the data base used for estimating the parameter values is highly nonhomoge-
neous; however, it is representative of the expected data base found in industry (see
Reference 1).

Using the statistical model described in the previous section, Equation 7, and Table 1, we
construct various 7 percentiles for the crack size, a (n), as a function of the number of load
cycles n. The results are shown in Figure 5 as solid curves and the numerical w lues are
presented in the Appendix. For instance, the curve associated with 'Yl0 indicates that the
probability is 10% that a specimen will have a crack size growing faster than that denoted by
the curve. These solid curves are the predicted distribution of crack gruwth damage
accumulation based on the statistical model. The crack propagation associated with y=5, 50 and
95 percentiles are also shown in Figure 4 as solid curves for the purpose of comparison with test
results.
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TABLE 2. PARAMETER VALUES C,2 C3 AND C4 AS WELL AS
STANDARD DEVIATION,

Test Number of
Segment Condition C, CO C' as Specimens

1 5 3,8982 -1.5376 -3,9341 0.1026 9
2 2 4.9323 -1.4073 -3.9895 0.1692 4
3 3 4.3098 -1.3032 -4.4450 0.1240 4
4 1 3,8033 -1.5239 -4.3563 0.1673 5

9A -'5% 10% 2.% 50% 76% 90% 05%2,0

1.4

S1,40

0.41

0''

0 20,000 40,000 60,000 60,000 i00,000 120.000 140,000 160,000
cycift. n FD 251640

Figure 5. Predicted Crack Size Versus Cycles Behavior Under Spectrum Loading

3. Correlation Between Btatlsticosl Model and Experimental Test Results

As observed from Figure 4, the statistical model predicts faster average crack growth
damage accumulation and slightly larger statistical dispersion. Thus, from the analysis and
design standpoint, the statistical model is conservative. The correlation between the test results
and theoretical prediction appears to be very reasonable.

The theoretical predictions for the statistical distribution of the number of load cycles to
reach crack sizes 0.8 and 1.4 inches (20.3 and 35.6 mm) are presented as solid curves in Figures 6
and 7, respectively. Also plotted in these figures as circles are the experimental test results for
twelve specimens. Furthermore, predictions for the probability of crack exceedance, which is
equal to one minus the distribution function of the crack size, at 24,000, and 35,000 load cycles
are displayad ia Figures 8 and 9 as solid curves, respectively. Also shown in these figures as
circles are the corresponding experimental test results. Again, Figures 6 to 9 indicate that the
statistical model is slightly conservative, in the sense that the model predicts shorter crack
propagation life and larger statistical dispersion. The correlation between the theoretical model
and the test results is very reasonable.

10
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Figure 6. Distribution of Cycles to Reach 0.8 Inch, for the INIO0 Mission Verification
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Figure 8. Probability of Crack Exceedance at 24,000 Cycles for INlO0 Mission
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Figure 9. Probability of Crack Exceedance at 35.,000 Cycles for INIO0 Mission
Verification Testing
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Since the initial crack size is deterministic, which is equal to 0,5 inch (12.7 mm), the
deviation between the theoretical predictions and the test results is expected to increase as the
number of load cycles increases. This is clearly demonstrated by the crack exceedance curves
shown in Figures 8 and 9. Furthermore, the statistical dispersion of the crack size increases with
respect to the number of load cycles as exemplified by these figures, Hence, the maximum
discrepancy occurs when the random number of load cycles reaches a 1.4 inch (35.6 mm) crack,
that is very close to the critical crack size (see Figure 4). It is observed from Figure 7 that the
discrepancy in predicting the average number of load cycles to reach a 1.4 inch (35.6 mm) crack
is approximately 13%.

Some of this conservatism may be dae to retardation at the crack tip caused by the change
in yield stress as a function of temperature. The size of the plastic zone is inversely proportional
to the square of the yield stress. At the 13500F test condition, the lower yield stress will cause a
larger plastic zone which will retard the crack when the temperature is decreased to 1200'F.
This will also occur from the 1200*F to the 1000*F temperature change. The initial retardation
of the crack growth rate in each test condition would result in a longer test life than the
predicted life, as the computer program (theoretical model) does not address retardation effects.

From the statistical standpoint, the main reason for a slight discrepancy comes from the
compiled data base as described in the following.

The theoretical prediction is computed based on the parameter values C, C, Can and.
for j = 1, 2, 3, 4, These parameters values were estimated using a compiled data set ýor each test
condition which was generated over a long period of time for different purposes. As a result, the
specimen preparations, heat treatments and processes of materials, test machines, measure-
ments and environments, etc. will not be identical to those specimens tested under the present
program. The number of test specimens compiled for the data base for each test condition is also
very small (see Table 1). Likewise, the data base is highly inhomogeneous, indicating that the
specimen dimension, initial and final flaw sizes, and the maximum applied load are all different
for each test specimen. Consequently, it may be reasonable to expect some inconsistencies
between the highly inhomogeneous data base, from which the theoretical model parameters are
calibrated, and the homogeneous test results generated in the present program. Nevertheless,
the worst discrepancy is only 13% on the conservative side, which is quite reasonable in
practice.

In practical situations, however, the data base is usually not plentiful, highly nonhomoge-
neous, and compiled over a long period of time under different test environments. Nevertheless,
such a homogeneous and limited data base can be used to calibrate the model parameters, and

_-* the present statistical model is capable of predicting the crack propagation behavior under
spectrum loading.

One important aspect of the fracture mechanics approach is that available crack growth
rate data from inhomogeneous data bases can be pooled together to estimate the crack growth
rate parameters, although the type of specimen, the specimen dimension, initial and final flawt lengths, and the maximum cyclic load for each test specimen may he different in the datia base.In contrast to other statistical models (e.g., References 14, 15, 18-21), the statistical model

proposed herein is based on fracture mechanics, thus it possesses the same important advantage
pertinent to the fracture mechanics approach

Finally, the present statistical model does not address the rethrdation or acceleration
effects. Further research is needed in this regard in order to provide a better prediction
capability necessary for retirement-for-cause analysis of engine components tinder service
loading spectra.

13

...............................



SECTION III

LOGNORMAL STATISTICAL MODEL APPLIED TO THE PARIS EQUATION FOR IN100

The lognormal crack growth rate model has been applied to data for IN100 at various test
conditions using the hyperbolic sine (SINH) function (Reference 1). In this section, the
lognormal model is developed for the Paris crack growth rate function. Emphasis is on the
simplicity of this model for practical application. The distributions of propagation life to reach
any specific crack size and the distribution of crack size at any service life are derived. The
correlation between the extrapolated test results for IN100 and the statistical model is shown to
be reasonable.

The Paris crack growth rate equation is given by

d a - Q [ ,&K ] h
d (13)

in which a = crack size after n load cycles, AK = stress intensity range, Q and b are functions of
temperature T, loading frequency Y, stress ratio R and others.

To account for the statistical variability of the crack growth rate da(n)/dn, the
deterministic crack growth rate function (Equation 13) is randomized as follows

- X(AK)QIAK]b (14)

in which X(AK) is a non-negative random function taking values around unity, and introduced
to reflect the statistical nature of the crack growth rate.

Taking the logarithm on both sides of Equation 14, one obtains

Y - bU + q, + Z(AK)

in which

I log -- , U -- logAK (16)

q logQ, Z(AK) - logX(AK)

Whereas X(AK) is a random function, the solution for the statistical distribution of the
crack growth damage accumulation is rather complicated (e.g., Reference 5). In this connection,
two extreme cases of the random function X(AK) should be mentioned. At one extreme, X(AK)
is completely independent at any two values of the stress intensity range, referred to as the
white noise process. Based on the central limit theorem, it can be shown that the statistical
variability of the crack size or the fatigue life, after integrating lUquation 14, is the smallest
within the class of random functions. Hence, it is unconservative for engineering analyses and
applications. Also, the mathematical solution for the white noise random process model is
difficult. At another extreme, the random function X(AK) is totally correlated at any two values
of the stress intensity range, indicating that X(AK) is a random variable, ie., X(AK) = X. For
the case of random variable X, the statistical dispersion of the fatigue crack growth damage

14



accumulaition is the largest in the class of random functions. Consequently, the random variable
model is conservative for the prediction of the crack propagation life and for practical
applications.

Because of mathematical simplicity in analysis and the conservative nature in crack
propagation prediction, we shall investigate the random variable model, i.e., X(AK) = X is a

positive random variable taking values around unity. It is assumed that X follows the lognormal
distribution with a median equal to unity. Tests for goodness of fit for the lognormal
distribution will be performed later,

it follows from Equation 16 that Z = log X is a normal random variable with zero mean. By
virtue of Equation 15 the log crack growth rate, Y = log(da/dn), is a normal random variable
with mean value pand standard deviation a given by

AY bU + q
(17)

ay-- a,(18)

in which it is obvious that the mean value pyis a function of AK, and the standard deviation a. is
a constant.

The parameters b and q (or Q), as well as the standard deviation a, (or a), given in
Equations 15 through 18 car be estimated from the test results of the crack growth rate versus
the stress intensity range using Equation 15 and the method of maximum likelihood estimate.
Since Y and Z are normal random variables and Equation 3 is linear, the method of maximum
likelihood is identical to the linear regression analysis and the method of least squares.

Teat results from compact tension specimens, for log crack growth rate Y = log (da/dn)
versus the log stress intensity range U = log AK are presented in Figure 10 as discrete points for
five IN100 specimens in the test condition No. 1 (T = 1000F, v = 10 cpm, R = 0.1). The crack
growth rate data shown in Figure 8 have been used to estimate b, Q and a. using the method of
maximum likelihood. The r "suits are presented in the first row of Table 3 and plotted in Figure
10 as a solid straight line for ay = 0. The maximum likelihood estimates of b, Q and 0,
determined from the test results of Y versus U using ASTM CT specimens, are shown in Table 3
for different test conditions (v,R,T).

The power law for the crack growth rate (Equation 14) holds only in the central region of
AK. In the regions where AK is either too low or too high, the crack growth rate appears to
behave asymptotically. Hence several data points for the crack growth rate have already been
censored in Figure 10. Also, the crack growth rate data seem to scatter around the solid straight
line indicating the validity of the Paris function.

To show the validity of the assumption that Z follows the normal distribution, sample
values of Z, aenoted by zy, are computed from test rsults of the log crack growth rate Y = log
da/dn versus log stress intensity range U = log AK, denoted by (yj,uj), using Equation 15

z) = yj - buj - q for j -1,2,...,n (19)

in which b and q have been estimated by the method of maximum likelihood and n is the total
number of test data.

15
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Figure 10. Data for Crack Growth Rate Versus Stress Intensity Range for Test
Condition No. I

TABLE 3, MAXIMUM LIKELIHOOD ESTIMATE OF b,
Q, STANDARD DEVIATION v AND
COEFFICIENT OF VARIATION OF da/dn

Test Coef of No. of
Condition* b Q a-d, Vawiation Data

1 2.0617 5.016X10-1 0.1516 36.0% 251
2 2.9216 7,409X10'- 0.1455 34.5% 147
3 2.8439 7.141X10'- 0.1038 24.3% 129
4 2.3850 1.870X1IO- 0,1961 45,2% 185
5 2,3180 3.141X10-s 0.1131 26.5% 338

Average 33.3%

*Test Conditions

1. T - t000F, P - 10 epm, R - 0.1
2. T - 1350F, P - 10 cpm, R - 0.1
3. T - 12001F,v " 10 cpm, R- 0,5
4. T - 1200*F, j - 20 cpm, R - 0.05
5. T, 1200'F, - 10 cpm, R - 0,.

Sample data of Z (j=1, 2, .... n) for test condition No, 3 are plotted on normal probability
paper in Figure 11 as circles along with a straight lile repre;enting the estimated normal
distribution for Z (with zero mean and standaid deviation a, determined previously, see Table
3). A linear scale is used in Figure 11 in which the sample data z, P.,e arranged in fn ascending
order, ie., z, :5 z2 : za... :s; z., and the ordinate (orresponding to zj is given by 4-t'0/(u4 1)] with
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,-i K ) being the inversed standardized normal distribution function. It is observed from Figure

11 that the sample values of Z are scattered around the straight line without a nonlinear trend,
indicating that the normal distribution is acceptable.
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Figure 11. Normal Probability Plot for Z (Test Condition No. 3)

The Kolmogorov-Smirnov test for goodness of fit was performed to determine the observed
K-S statistic D.. The normal distribution was found to be acceptable at least at a 10% level of
significance.

Since Z - log X and Y - log da/dn are normal random varableb, the crack growth rate G =
da/dn follows the lognormal distribution. The coefficient of variation, V, of da/dn is re!ated to
the standard deviation, o,, a., through

V - [e(VY'n"'° - 11/2( (20)

The coefficients of variation, V, for the crack growth rate, G f da/dn, for five test conditions are
also presented in Table 3.

The distribution of Z, and Y = log[da/dn], are both normal with the same standard
deviation, ayl fi.%, that has been determined previously. Let zY be the y percentile of Z, i.e.,

'Y% • P[Z>z,] - 1 -- (z'/a,)
(21)

or inversely,

S• 4@-l(1 - y%) (22)
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They percentile of the log crack growth rate Y, denoted by yy (AK,b,q), follows from Equation 3
as

y.(AK,b,q) - bU + q + z, (23)

in which z. is given by Equation 22. Note that y7 (AK,b,q) is a function of b and q which in turn
depend on test conditions (p, R, and T).

Therefore, by varying the value of y, one obtains the distribution of the log crack growth
rate in terms of percentiles, The results are shown in Figure 12 for test condition No. 1 (P =
10 cpm, R = 0.1 and T = 1000°F). As an example, the crack growth rate path associated with ',
= 10 indicates that the probability is 10% that a specimen will have a growth rate faster than
that shown by the curve.

-2

-3

10

-4
C 25

75

-6 90

95 Test Condition 1

-7 1 - I 1 11
0.8 1.1 1.4 1.7 2.0 2.3

Iog(dalta k)
Fr) 25fl34

Figure 12. Percentiles of Log Crack Growth Rate as a Function of Log Stress Intensity
Range for Test Condition No. I

The ,y percentile of the random variable X, denoted by Xr, is computed from Equation 4 as

X - (10)' 24
(24)

in which z,, is given by Equation 10.

The 7 percentile of the crack size after n load cycles, denoted by a,, is obtained by
substituting Equation 24 into Equation 4

da•

(25)
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in which the stress intensity range AK7 for the ASTM CT specimen is expressed as

K APAK' -- -Bfial]
S(26)

where B = specimen thickness, W - specimen width, AP = applied load range and

f[a7 ] (I (l-a)/ (0.866+4.64a-13,32a 2 +14.72ac-5.6a4) (27)

a -

(28)

Thus, Equation 25 can be integrated numerically over particular limits to obtain a set of
crack lengths, a (n), versus the number of load cycles, n, for different -y percentiles. It should be
mentioned that the numerical integration using Equation 26 for each y percentile of the crack
length, a(n), is deterministic and straightforward.

Test environments, including the initial crack size so, the final crack size ap the maximum
load P.., and the width W and thickness B of the ASTM CT specimen, are assumed for each
test condition as shown in Table 4. The necessity to assume homogeneous test environments in
Table 4 for the correlation study has been described previously (Reference 1). Integrating
Equation 25 and using Tables 3 and 4, one obtains five sets of crack length, a,, as a function of
the number of load cycles, n, for different y percentiles. Only the results for test conditions
No. 1 and No. 2 are displayed in Figure 13.

TABLE 4. ASSUMED HOMOGENEOUS TEST ENVIRON-
MENTS FOR TEST SPECIMENS

Tut a. at W B
condition (in.) (in.) on) (in.) (hip..)

1 0.5 2.0 2.502 0.250 1.400
2 0.5 2.0 2.503 0.501 2.600
3 0.5 1.8 2.000 0.500 2.600
4 0.5 2.0 2.506 0.500 3.000
5 0.5 2.0 2.497 0.501 3.633

S- initial crack size
t, final crack sian
W - specimin width
B - specimen thickness
P. - maximum load

In the life prediction of engine components, two statistical distributions are of practical
importance; (1) the distribution function, FN(. , of the number of cycles, N(a1 ), to. reach any
given crack length, a, and (2) the distribution function, F.(x), of the crack length a after any
number of load cycles n. Since Figure 13 represents the distribution of the crack length as a
function load cycles n, it contains all the information needed to determine the distributions
mentioned above. For instance, by drawing a horizontal line in Figure 13 through a crack length
of interest, the distribution for the number of cycles to reach that crack length is obtained.
Likewise drawing a vertical line in Figure 13 through a given load cycle n, one obtains the
distribution of the crack length after n load cycles. The complement, F:(x), of the distribution
function, F,(x), of the crack length, i.e., F:(x) - 1 - F,(x), is the probability that the crack
length after n cycles will exceed a certain value x. Hence, the plot of F:(x) is referred to as the
crack exceedance curve.
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Figure 13. Distribution of Crack Size as Function of Load Cycles Based on Statistical
Model; (a) Test Condition No. 1, (b) Test Condition No. 2
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For instance, the distribution function, FN(-,), for the number of load cycles to reach the
"crack lengths a, = 1.0 and 2,0 inches is obtained from Figure 13 and displayed in Figure 14 as a
solid curve for test condition No. 1. For the same condition, the crack exceedance curve F:(x)
after n = 25,000 cycles is shown in Figure 15 as a solid curve.

In a similar manner, the distribution functions for the number of load cycles to reach
certain crack sizes and the exceedance curves after certain number of load cycles for test
conditions No, 2 to No. 5 are presented in Figures 16 through 23 as solid curves. Note that the
solid curves depicted in Figures 14 through 23 are obtained based on the statistical model that
utilizes only the crack growth rate data, e.g., Figure 10, for estimating the model parameters b, Q
and ay = ea as shown in Table 3.

1. Correlation with INlOb Test Results

A qualitative correlation study of the IN100 results is carried out in the following manner.

Test results of the crack growth rate for each specimen are best fitted by the hyperbolic
sine crack growth rate function proposed by Pratt & Whitney Aircraft (Reference 2).

Y - C0 sinh [Cg(U + C2)] + C& (29)

in which Y and U are given in Equation 16, C1 is a material constant, and Cp, C. and C4 are
constants depending on the test condition (Y, R, T). Equation 29 involving four parameters is
supposed to provide a better fit to the crack growth rate data.

Given the crack growth rate data, the least squares best fit procedures to estimate values of
02, C, and C4 for each specimen were described in Reference 2 and the results of C2, C. and C4 for
each specimen in five test conditions were presented in Reference 1. Then, Equations 29 and 16
can be integrated to yield the crack size, a, as a function of load cycles, n. It has been shown that
the crack growth damage accumulation a thus reproduced by integrating Equations 29 and 16
correlates very well with the test results for each specimen (Reference 1).

In order to correlate the nonhomogeneous test results with the predictions based on the
statistical model proposed previously, homogeneous test environments have been assumed for
each test condition, as shown in Table 4. The maximum loads Pm.. given in Table 4 are chosen in
order to avoid excessive extrapolation far into the region of AK in which actual test results do
not exist.

By integrating Equations 16 and 29 over the homogeneous test environments, with
appropriate values of C1, C2, C1 and C4 for each specimen (see Reference 1), one obtains five sets
of the homogeneous crack size, a, as a function of load cycles n. These homogeneous data sets are
referred to as the extrapolated test results, since they are not the results obtained directly from
experimental tests. The extrapolated test results for the crack size a versus load cycles n for the
five test conditions are given in Reference 1 and only the results for test conditions No. 1 and
No. 2 are depicted in Figure 24. A comparison between Figures 13 and 24 indicates that the
correlation between the theoretical model and the extrapolated test results is reasonable.
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Figure 14. Distribution of Cycles To Reach Given Crack Size for Test Condition No. 1;
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Figure 115. Crack Exceedance Curve After 25,000 CycLe8 for Test Condition No. I

From the extrapolated test results for the crack size a versus the number of load cycles n,
one obtainis (1) extrapolated teat data for the number of load cycles to reach any given crack size
a, by drawing a horizontal line through a,, and (2) extrapolated test data for the crack size after
any number of load cycles n, by drawing a vertical line through n-.

The distribution function is constructed from the extrapolated test data obtained above by
arranging them in an ascending order. The ordinate of the ith data is given by i/(m+1) where m
is the total number of data points. For instance, one obtains five data points from Figure 22 by
drawing a horizontal line through a, - 1.0 inch. These five data points, for the number of cycles
to reach a crack size of aI = 1 inch, are ranked in an ascending order where the ordinate of the
ith data point is equal to i/6 (i=1, 2, ..., 5). These results are shown in Figure 14(a) by circles. In
like manner, the distributions of the extrapolated test results for the number of load cycles to
reach other crack sizes, as well as their creck exceedances after some numbers of cycles have
been constructed and shown in Figures 14 through 23 as circles. It is observed from Figures 14
through 23 that the correlation between the statistical model (solid curves) and the extrapolated
test results (circles) is very reasonable,
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SECTION IV

ANALYSIS OF TI 6-2-4.6 AND WASPALOY DATA

Available Ti 6-2-4-6 and Waspaloy crack propagation test results from constant amplitude
cyclic loading with various test conditions were compiled. The specimen dimensions, initial
crack size, final crack size, and maximum load for each specimen in each test condition are
shown in Tables 5 and 6. The crack growth rate data for all specimens in each test condition are
also pooled together for analysis purposes. The pooled data for Waspaloy and Ti 6-2-4-6 from
test condition Number 1 are shown therein, respectively.

TABLE 5. SPECIMEN GEOMETRY AND MAXIMUM LOAD
FOR EACH TEST SPECIMEN OF Ti 6-2-4-6

Test Specimen a. a R W P..Condition -No.. (in,) _..in.) (in. Cin.) (i•.t.

T - Room Temperature 1536 0.8138 10724 0,249 2.496 005480
v - 20 Hz 1508 0,8130 1.6130 0.2970 2.5007 0.7200
R - 0.1 1582 0,380 2,2080 0.3690 2.0085 1,0640

1682 0.7360 1.0620 0.5004 1.4970 0,6821663 017680 110590 0.499 1.49 0,6810

1676 0,3990 1,1780 0,5020 1.910 0.9580
1677 0,4040 141900 0.3830 1.9987 0,985
1680 0,4730 1,1164 0,3735 120955 1.0060
1972 0,1919 0,6025 0.900 0.99 1.1960
1535 0.7835 1,7618 0.2485 204999 4.27

2
T -Room Tmperature 03 0.3850 017973 0.0970 2,0000 0,624
v- 10 epth 0448 0,8629 1,7005 0,2520 2.2551 0,568
R - 0.1 1484 1.3789 13577 0.1250 2.4951 1,037

010M 0,6784 1,1716 0,5004 109929 1,182
1886 0.5733 1.1711 0.5005 2.0060 1,138
1892 0.5149 1.4487 0.3890 2.4993 1,296
2103 0.5577 1,2964 0.3760 2"003 1,301

S

T - Reto Temperature 1744 0.0828 0.2261 0.2935 0.996 6.611
V - 10 eHz 1741 0.0766 0.1982 0.2900 0.996 7.157
R - 0,0 1742 0,0887 0489 0,2970 0.950 6.815

1672 0.116 0.31 0,9050 0 .1997 4.2734
T - 800'F 0358 0.597 1,7926 0,2750 2.2520 U,24
v - 10 opra 0359 0.6697 1.5878 0.2750 2.2556 0.626
R - 0.1 0409 0.3690 0,8359 0.1260 2.0000 4,644

0410 0.3674 0.6907 0.1205 2.0000 4.891
1245 0.6453 0.7775 0,5010 1.0030 0.365

1881 0.3068 1.4964 0.5240 1.9959 1.763
1883 0,3679 1,4914 0,5040 2.0045 1,577

T - 400OF 0413 0,6325 2,06M0 0,2500 2,5000 0.3330
S-20 Hz 0415 0.3741 0,8276 0,1260 2.0000 2,4500

R - 0,1 0416 0.9426 2,0489 0.2500 2.5W02 0.2690
1678 0.4260 0.9300 0,3440} 1.9972 1.1150
IBM6 0.6128 1.4754 0.5015 1.9986 1.1210
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TABLE 6. SPECIMEN GEOMETRY AND MAXIMUM LOAD
FOR EACH TEST SPECIMEN OF WASPALOY

Test Specimen a. a/ B W P.
Condition No. (in.) (in.) (in.) (in.) (kip,)

T , 1200F 0738 1.0706 1L7666 0.432 2,502 1.621
u- 20 Ha 1464 0,.60 2.0820 0.500 2.500 1.240
R - 0.06 1470 0,86510 1.7460 0.491 2,491 1.224

1304 1.0830 1.6670 0.500 2.09 2.263

2
T - 1200*F 1004 0.0703 0.3326 0.301 0.998 11.613
v - 10 epm 1301 1.1072 1.7094 0,601 2,519 1.769
R - 0.05 1013 0.9688 1.8553 0,132 2.484 1.261

3
T - 800*F 1002 0,8339 1.7598 0.499 2,606 2.574
V- 10 epm 1003 0.0635 0,3047 0.303 0.997 13,316
R - 0.05 1018 1.01U4 1.89" 0.298 2.5W 1.417

Using the hyperbolic sine crack growth rate function (Equation 29), and the lognormal
statistical model (Reference 1), we obtain the maximum likelihood estimates for C. , C3, C4 and
the standard deviation o a . These results are presented in Tables 7 and 8. The crack growth
rates based on the values of CI, C2, C. and C4 given in these tables, for Z - 0, are shown as solid
curves in Figures 25 and 26 (test condition Number 1).

TABLE 7. MAXIMUM LIKELIHOOD ESTIMATE OF C2 , CS, C4,
STANDARD DEVIATION a = a AND COEFFICIENT
OF VARIATION, V, OF da/d'n FOR Ti 6-2-4-6 (HYPER-
BOLIC SINE FUNCTION)

No, of
Test Data

Condition C, C, q, C4  -fr, V Points

1 0.7 4.68 -1.0898 -6.4878 0.0672 15.6% 269
2 0.7 4.5715 -1.1088 -5.378 0.1156 27.1% 179
a 0.7 3.0949 -0.9651 -6,7946 0.1174 27,5% 50
4 0.7 2.1954 -0.9086 -5,4958 0.0561 13.0% 251
5 0.7 3.5301 -1.0641 -6.7081 0.0939 21.9% 163

TABLE 8. MAXIMUM LIKELIHOOD ESTIMATE OF C2, CS,
C4 , STANDARD DEVIATION o, = or AND COEFFI-
CIENT OF VARIATION, V4 OF da/dn FOR
WASPALOY (HYPERBOLIC SINE FUNCTION)

No, of
Test Data

Condition C,• I C, G.y-O, V Points

1 0.5 3,5484 -1,4054 -5,0269 0.0783 18.2% 130
2 0.5 4.0154 -1,3694 -4.8774 0.0470 10.9% 60
3 0.5 4,3817 -1.4941 -4.9847 0.0554 12.8% 67

34



AK, MPa m

10- ,_2 6 10 2 6 100 2 5 1000 7APe7N1N Symbol

,o, - iiiiiiiiiiiiiliiiiiil '''liii 'iIII ' ,o.7AN0736 a]
- 10-1 7AN1484 C

* 7AN1470
7AN1304 +

10-3 ./ 1-~... ... ... ... .. .. .................. .. ...........

10--

10-4

I 10-3

_,• ,10 -'6 _ . ........................... 1 .. ........ .......... ..........................

_ __ 10-4

1065

1 2 5 10 2 5 100 2 5 1000

AK, kl V./1•

Figure 25. Crack Growth Rate Model for Waspaloy at 12000F, 20 Hz, and R 0.05

35 6

!4



AK, MPa %/M-

1- 2 5 10 2 5 100 2 5 1000

SWe No. Symbol

10-' 7AN1535 V3
7AN1536 0
7AN1580 A

- ANISO2 +
7AN16S2 X

1-3........................................................ 7ANI 163 !

7AN1676 +'
7AN1677 x
7AN1680 Z

10-1 IAN1972 Y

10-3

;i~~~~~1- 106...... . .

10-1

101*-6

%omit 10-6

2 5 10 2 5 100 2 5 1000
AK, kal v~-

Figure 26. Crack Growth Rate Model for Titanium 6-2-4-6 at Room Temperature, 20 Hz, and R 0.1

36



Crack growth rate data for each specimen are beet-fitted by the hypcrbolic sine function
(Equation 3), to determine the parameter values C0, C3 and C4. The results of the parameter
values for each specimen are shown in Tables 9 and 10.

TABLE 9. PARAMETERS C2, C0, AND C4 FOR EACH TEST
SPECIMEN OF TITANIUM WITH C, = 0.7, HYPER-
BOLIC SINE CRACK GROWTH RATE FUNCTION

Test Typo of
Condition Specimen No, CO Vs C4 R specimen

1 - 15.98 4.692 -1.0205 -5.735 0.1 MCI'

1580 4.1696 -1.2051 -5.1217 0,1 MCT
1582 5.0229 -1.3336 -4.6700 0.1 MCT
1662 4,4731 -1.0217 -5.6851 0.1 MCT
1683 4,75a7 -1.0399 -5.6814 0.1 MCT
1676 4.1695 -0.9868 -56.824 0.1 MCT
1677 4,2736 -0,9858 -5,8294 0.1 MCT
1680 4,1694 -1,2464 -4.9161 0.1 MCT
1972 3,7766 - 1.0662 --5.5379 0.1 PItT
1535 4,8335 -1.0630 -5,6762 0,1 MCT

2 - 0423 4.6117 -1,1744 -5,2811 0.1 ON
0448 4.4517 -1.0333 -5.6816 0.1 MCT
1484 4.8831 -1,4252 -'44558 0,1 MNOT
18 5.2785 -1,1319 -5,2332 0.1 MCT
1886 4,0642 -0,8937 -6,1048 0.1 MCT
1892 4.6282 -1.0629 -5,6214 0,1 MCT
2103 5.1135 -0.9827 -5.7010 0.1 MC('

3 - 1744 5.4560 -1.3166 -4.6476 0.0 ON
1732 3.1613 -0.8448 -5.6793 0.0 ON
1741 5.1208 -1.2970 -4.7369 0.0 ON
1542 4.7786 -1.4152 -4,3071 0.0 ON

4 - 0558 2.1554 -0,8647 -5,5219 0.1 MOT
0369 1.6211 -0.4380 -8,1660 0.1 MCT
0409 3.0045 -1.7454 -3,7829 0.1 CN
0410 3.3857 -1,4531 -4.4011 0,1 CN
1245 2.2045 -0.8054 -5,619 0.1 MCT
1881 2.7011 -1,0981 -5,1852 0.1 MCT
1883 2.3800 -0.9634 -5,4166 0.1 MCT

8 -- 0413 3.5875 -1.1146 -5,5747 0.I MCT
0415 3.4828 -1.2919 -5.1373 0.1 CN
0416 3.8776 -0.8233 -6,4855 0.1 MCT
1678 3.7288 -1.2226 --5,2324 0.1 MCT
1886 3,590A -1.1537 -5.3697 0.1 MCT

TABLX 10. PARAMETERS C2, C3, AND C4 FOR EACH TEST
SPECIMEN OF WASPALOY WITH C1 - 0.5, HYPER-
BOLIC SINE CRACK GROWTH RATE FUNCTION

Teat Type o/
Condition Specimen No, Cr Cl C4 R Specimen

1 0736 3.9744 -1.5278 -4.8472 0,05 MCT
1464 3.4968 -1.4725 -4.8366 0.05 MCT
1470 4.4457 -1.2349 -5.8545 0,05 MCT
1304 3.8747 -1.5438 -4,7752 00.1 MOT

2 1004 4,9009 -1.4710 -4.6875 0,05 CN
1301 3.7554 -1.2698 -5.1172 0.05 MCT
1013 3,8140 -1.4985 -4.5702 0.1 MCT

3 1002 4,4664 -1.408 -4.8281 0.05 MCT
1003 4.9438 -1.5226 --4.9012 0.05 CN
1.018 3.827 -1.3911 -5.2284 0.05 MCI'
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In order to perform correlation studies, homogeneous test environments should be
assumed, since each test specimen has different geometry, initial crack size, final crack size, and
maximum load P,., as shown in Tables 5 and 6. Homogeneous test environments assumed for
Waspaloy are shown in Table 11.

TABLE 11. ASSUMED HOMOGENEOUS TEST ENVIRON-
MENTS FOR EACH TEST CONDITION FOR
WASPALOY

Tesat a at B W P,.. Type of
Condition (in,) ((n,),_ 0n)ki(...) p .___) Specimen

1 0.6 2.0 0. 2.5 1.6 MCT
2 0.5 2.0 0.5 2.5 6.2 MCT
8 0,5 2.0 0.6 2A 4,0 MCT

The distribution of the crack growth damage accumulation, a, as a function of load cycles,
n, based on the lognormal statistical model can be obtained using Tables 8 and 11. Then, the
distribution functions for (1) the number of load cycles to reach any specific crack size, and (2)
the crack exceedance probability at any given number of load cycles, can easily be determined
(Reference 1). The distribution functions for the number of load cycles to reach crack sizes 0,875
and 2.0 inches are displayed as solid curves in Figures 27(a), 28(a), and 29(a), for the three test
conditions, Likewise, the probabilities of crack exceedance at n - 50,000, 10,000 and 50,000
cycles, for tho three test conditions, are shown as solid curves in Figures 27(b), 28(b), and 29(b).

With the aid of the best-fitted parameter values for C2, Cp, and C4, given in Table 10, the
crack growth damage accumulation, a, for each individual specimen, is obtained by integrating
the crack growth rate equation and using the assumed homogeneous test environments given in
Tahle 11., The distribution of the number of load cycles to reach any specific crack size and the
crack exceedance probability at any givon number of load cycles is then established. These
extrk,)olated results are presented as circles and triangles in Figures 27 through 29, The
honogeiLeows test environment in Table 11,, is assumed to avoid excessive extrapolation into the
region of 4K for which test data do not exist. This may be difficult to achieve because the crack
growth rate data for each specimen do not cover the same region of AK. Therefore, the
extrapolation cannot be avoided for some specimens, This problem becomes more serious for the
Ti 6,-2-4-6 data and will be discussed later.

It is observed from Figures 27 through 29 that the correlation between the lognormal
statistical model and the extrapolated test results is very reasonable for Waspaloy,

In a similar manner, homogeneous test environments are assumed for TI 6-2-4-6. Based on
the lognormal statistical model, the distribution functions foe' the number of cycles to reach two
different crack sizes are shown as solid curves in Figures 30(a) through 34(a) while the crack
exceedance curves are shown in Figures 30(b) through 34(b). The corresponding extrapolated
test results are shown in the same figures by circles and triangles. It is observed that except for
test condition number 5, the correlation is less than satisfactory,
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Figure 31. Distribution Curve and Crack. Rxceedance Curve for Titanium for Test
Condition No. 2, Using the Hyperbolic Sine Model; (a) Distribution of
Cycles to Reach Given Crack Size, and (b) Crack Et.ceedance Curve After
20,000 Cycles
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A careful examination of the data indicates that the ext.apolation for some specimens is
excessive, due to the following reasons: (1) The crack growth rate data for each specimen cover
different ranges of AK, and therefore, it is impossible to assume a homogeneous test
environment without excessive extrapolations for some specimens, and (2) The hyperbolic sine
function has two asymptotes, and the extrapolation is very sensitive in the region of AK where
an asymptote occurs. In test condition Number 1, for instance, the crack growth rate data of one
specimen (Number 7AN1592) covers only a very small range of AK. Consequently, the best-
fitted hyperbolic sine function results when the left asymptote falls into the region of
extrapolation as shown in Figure 35. Thetefore, the propagation life is too long as indicated in
Figure 30 by numerical values. Consequently, it seems reasonable to censor this specimen. With
such a specimen being censored, the results are shown in Figures 36(a) and (b). It is observed
that the correlation is very reasonable. Similar situations exist for test conditions Numbers 2
through 4.

The Paris crack growth model was also used to analyze statistically the Waspaloy and
Titanium data.

From the pooled crack growth rate data for each teat condition, the method of maximum
likelihood was employed to estimate the parameters b and log Q as well as the standard
deviation a. -- v. The results are presented in Tables 13 and 14, respectively, for Waspaloy and
Titanium. Furthermore, the crack growth rate data for each test specimen were best-fitted by
the Paris function to determine the corresponding b and log Q values. The results for each
specimen are shown in Tables 15 and 16, respectively.

Following the same procedures described in Section III and using the assumed homoge-
neous test environmenta given in Tables 11 and 12, the correlation between the statistical model
and the extrapolated test results was obtained. The correlation results for the distribution of
random number of load cycles to reach any given crack size and the crack exceedance curve are
depicted in Figures 37 through 44. It is observed that the correlation is vwry good for Waspaloy
data sets whereas a considerable improvement in correlation has been achieved for Titanium
data sets.

TABLE 12. ASSUMED HOMOGENEOUS TEST ENVIRON-
MENTS FOR EACH TEST CONDITION FOR
TITANIUM

Test ao at B W P., Type of
Condition (in,) (ira.) --Lin.) (in.) (hips) specimen

1 0.4 1.7 0.3830 1.9987 1.40 MCT
2 0.4 1.7 0.3890 2.4943 2.40 MCT
3 0,08 0.4 0,3000 1.0000 7.90 CN
4 0.4 1.7 0.5000 2.0000 4.64 MCT
5 0,4 1.7 0.3440 1.9972 1.12 MCT
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TABLE 13. MAXIMUM LIKELIHOOD
ESTIMATE OF b, LOG Q
AND STANDARD DEVIA-
TION a, = c. FOR WASPA-
LOY (PARIgFUNCTION)

Test Condition b log Q 0, - a.
1 2.1841 -8.0979 0,0826
2 2.1429 -7.8101 0,0475
3 2.4193 -.8,8940 0,0876

TABLE 14. MAXIMUM LIKELIHOOD
ESTIMATE OF b, LOG Q
AND STANDARD DEVIA-
TION o, " . FOR TITANI-
UM (PARIS VUNCTION)

Teat Condition b log Q 0.- ay

1 3,6062 -9,4166 0,0797
2 3,240 -9.2847 0,1180
3 2,8691 -8,4737 0,1273
4 2,1210 -7,8039 0.0926
5 3.1094 -9,0305 0.0767

TAB'LE 1.. PARAMETERS b AND LOG Q
FOR EACH TEST SPECIMEN OF
WASPALOY, (PARIS FUNCTION)

Test Condition I

.- S , oirn Ito, b lot Q
0736 2.2388 -8,2642
1464 2,2937 -8,2106
1470 2,171 -8.4611
1304 2.0887 -7,9979

Teas Condition 2

Specimen No. b log Q

100o 2,5790 --8.4792
1301 2.1821 •-7.8826
1013 2.1302 -7,7809

Teat Condition 3

Spocimen No, b log Q

1002 2.4759 -8,6685
1003 2,8664 -9,2361
1018 2.1978 -8.2906
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TABLE 16. PARAMETERS b AND LOG Q
FOR EACH TEST SPECIMEN OF
TITANIUM (PARIS FUNCTION)

Teat Condition I

Spcimen No. b lo Q
1535 3.8179 -9.7058
153 3,989 -9.4006
1580 3.5938 -9.4074
1582 4.02•8 -10.0165
162 3.6577 -9.420D1663 3.8253 -9,0413

1676 8.5012 -9.2797
1677 34t373 -9.4230
l•0 a.760c -9,5302

172$ 2.Ta 2 -8.7004

Teat Condition 2

Specime N o. b log Q
0423 3.3759 -9.2429

0444 8.189 -90,0721484 5.0674 -11.2012

is" 4.0291 -9.79M21886 3.4m$0 -9.2101

12 3.69220 -9,43"
1704 4.8748 -10.0253

Te#t Condition 9

Specimen No. b Wo Q

1744 4.5104 -70.883
0402 2.0T72 -8.6595
1741 8.4522 -95W48
1742 4A.9 -11.021

Te•t Condition 4

Specimen No, b tog Q

0451 1.9648 -7.21903K9 1.96119 -7,.8631

0415 2.1940 -8.5598
0410 2.4115 -7.9187
1248 1.7779 -7.1221101I 2,.74% -7.W062

188I 2.2311 -7.6245

Test Conditiont 6

S041. 5 -0.2172S041 2,.635 -8.5358
, i0418 IgND -8.i)137
i:. I'1678 2.9,Mb~l -8,.mu

lw 2 88 .7W.3 -. 6,4"
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Figure 37. Distribution Curve and Craock Exceedanve Curve for Waspaloy for Test
Condition No. 1, Using the Paris Model; (a) Distribution of Cycles to Reach
Given Crack Size, and (b) Crack Exceedance Curve After 50,000 Cycles
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Given Crack Size, and (b) Crack Exceedance Curve After I0,000 Cycles
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Figure 41, Distribution Curve and Crack Exceedance Curve for Titonium for Test
Condition No. 2, Using the Paris Model; (a) Distribution of Cycles to Reach
Given Crack Size, and (b) Crack Exceedance Curve After 20,000 Cycles
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Figure 43. Distribution of Cycles to Reach Given Crack Size for Titanium for Test
Condition No. 4, Using the Paris Model; (a) Distribution of Cycles to Reach
Given Crack Size, and (b) Crack ExcOedance Curve After 5,000 Cycles
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SECTION V

STATISTICAL ANALYSIS OF A HOMOGENEOUS DATA SET

A homogeneous crack propagation data set for 2024-T3 aluminum canter-cracked

specimens under constant amplitude cyclic loading generated in References 3 and 4 is analyzed.

The lognormal statistical model, developed under the present program, and an advanced model

currently being developed under another program, have been used. The results of such analyses

reveal the importance of both the selection of the crack growth rate function and the data

analysis technique used for deriving the crack growth rate data from the experimentcl

measurements.

Sixty-four sample functions for the crack growth damage accumulation, a, versus the

number of load cycles, n, are shown in Figure 45, The initial half-crack length is 9 mm and the

final half-crack length is 49.8 mm. The crack growth rate data, da/dn, versus the stress intensity

range, AK, are derived from Figure 45 using the seven-point polynomial method and the secant

method. Based on the hyperbolic sine crack growth rate function, (Equation 1), the method of

maximum likelihood is employed to estimate the parameters C2, Cj, C4 and the standard

deviation cy, = a. (see Reference 1). The results are shown in Table 17. It is observed from Table

17 that the statistical dispersion of the crack growth rate, da/dn, is smaller when the seven-point

polynomial method is applied.

49.8

41.5

E
E 33.2

S24.9

'16.6

8.3

0
0 8 16 24 32 40

Cycles, n - X 104

Figure 45. Homogeneous Data Set of Virkler, et al. with P,. = 23.35 kn and R 0.2

Using the lognormal statistical model and integrating the crack growth rate equation

(Equation 1), for different y percentiles, one obtains the distribution of the half-crack length as

a function of load cycles n. The results one shown in Figure 46, in which the seven-point

polynomial method has been used. Note Lat the stress intensity range AK for the Wcr

specimen is given by

AP 7fra
AK= -]Wa--sec (Ora/2W) (30)
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TABLE 17. MAXIMUM LIKELIHOOD ESTIMATE OF C2, Cap C4,
STANDARD DEVIATION - a, AND COEFFICIENT OF
VARIATION, V, OF da/dn; C,- 0.5

Analys is
Technique C' CaC YYY €, V

7-Point 3.4477 -1.3902 -4.5348 0.08235 19.18%
Polynomial

Secant
method 5.0148 -1.1336 -5,0733 0.09589 22,35%

5%1 %25%60%75%90% 98%49.8 -
45•

4011 35
I.I

~30

265

20

15

0 4 G 12 16 20 24 28 32 36 40
Cycles, n - X 104 F 26031

Figure 46. Lognormal Statistical Model Prediction of Virkler, et al. Data Set

A comparison between Figures 45 and 46 indicates that the lognormal statistical model
correlates well with the tost results for the 50% crack propagation life. However, the statistical
dispersion of the crack growth damage accumulation based on the model is larger than the
experimental test results.

The dlistribution functions for the number of cycles to reach half-crack lengths of 21 mm
and 49.8 mm are presented in Figures 47 and 48, respectively. In these figures, the solid curve
mid the dashed curve represent the results based on the lognormal statistical model. The former
is obtained using the 7-point polynomial method, whereas the latter is obtained using the secant
method. The experimental test results, Figure 45, are shown by circles in Figures 47 and 48.
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Figure 47, Distribution Function of Number of Cycles to Reach 21mm Half-Crack
Length

The probabilities of crack exceedance at n = 150,000 cycles are shown in Figure 49 as a
solid curve, a dashed curve, and circles which have the same meaning as those in Figures 47 and
48.

As observed from Figures 47 through 49, the correlation betwoen the lognormal statistical
model and the test results is very good for the 50% crack propagation life. However, the modol
predicts a larger statistical dispersion for crack growth damage accumulation than the actual
test data which results in a conservative prediction for the crack propagation life. Furthermore,
the seven-point polynomial method appears to be superior to the nccant method.

The observation that the lognormal statistical model results in a larger statistical
dispersion for the crack growth damage accumulation was expected as described in Reference 1.
This stems from the assumption that the crack growth rate is completely correlated and hence Z
is a random variable. At another extreme, wheii the crack growth rate is assumed to be
completely uncorrelated at any two different values of log AK, oile obtains a white noise process.
The white noise process model results in the smallest statistical dispersion for the crack
propagation life (Reference 1) as evidenced by the results presented in References 3 and 4.
However, for the white noise model, the prediction for the crack propagation life is
unconservative.
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Figure 48, Distribution Function of Number of Cycles to Reach 49.8mm Half-Crack
Length

The actual test results in Figure 45 indicate a definite correlation for the crack growth rate
at different values of log AK. Therefore, a statistical model taking into account such a
correlation has been explored in Section VI, which is referred to as the advanced statistical
model. A complete development for the analytical solution of such a model has been
accompl~sbed under the sponsorship of another program (Reference 28). It cem be shown that

the statistical dispersion of the crack propagation life decreases as the correlation for the crack
growth rate reduces.

Based on the advanced model with the correlation parameter A = 40,000 (see Section VI),
the distribution functions for the number of cycles to reach half-crack lengths 21 mm and
49.8 mm are indicated by dotted and dash-dot curves in Figures 47 and 48. The dotted curve
represents the results of the advanced model using the seven-point polynomial method, while
the dash-dot curve denotes the results using the secant method. Similarly, the crack exceedance
curve at n - 150,000 cycles is shown in Figure 49 by dotted curve and dash-dot curve having the
same meaning as those in Figures 47 and 48.

An indicated from Figures 47 through 49, the advanced model with the method of seven-
point polynomial correlates well with the experimental test data (circles). For the advanced
model, the 7-point polynomial method is definitely superior to the secant method.
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Figure 49, Crack Exceedance Curves at 150,000 Cycles

In conclusion, the Paris crack growth rate function, Equation 13, has been used in
conjunction with both the lognormal and advanced statistical models. The correlation between
the test data and the prediction based on the Paris crack growth rate funtion is extremely poor
even for the 50% crack propagation life, Therefore, it is not worthwhile to present the results.

The results of analyses for the homogeneous data set presented above indicate two salient
features associated with the prediction of fatigue crack propagation. For a particular type of
specimen under a particular type of fatigue loading, one should select a crack growth rate

function which can best describe the crack growth rate behavior. For the homogeneous data Bet
analyzed, the hyperbolic sine function fit the crack growth rate data very well, whereas the Paris
function did riot. Using the method of maximum likelihood, the goodness-of-fit can be judged
from the standard deviation ff = a,. A crack growth rate function has a better fit if the
corresponding standard deviation a. is smaller.

Data for the crack size, a, versus the number of load cyci L3, n, are measured directly from
experiments. Then, the crack growth rate data are derived from a versus n measurements.
Various analysis techniques for obtaining the crack growth rate data have been propocud in the
literature, such as tho secant method, the method of seven-point polynomial, etc. Unfol.tunately,
the accuracy for the statistical prediction of fatigue crack propagation depends on the data
reduction methodology employed. Further research is needed to identify a best technique for
the reduction of the crack growth rate data as well as the measurements of a versus n.
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SECTION VI

ADVANCED STATISTICAL MODEL FOR FATIGUE CRACK GROWTH

Several mathematical models have been proposed for the prediction of crack growth
damage accumulation for structures under dynamic loads based on the principles of fracture
mechanics (References 6 and 7). These models have the general form of

da
-da- Q(K,AK,s,a,R)

(31)

where a(t) - crack size at time t, Q - a non-negative function, K = stress intensity factor, AK =

stress intensity range, s ý stress amplitude, R =stress ratio. For instance, the well-known Paris
model is given by

da
-d•- Q,(AK)b

(32)

AK , a(a) As V (33)

where As = stress range, a( ) = a function depending on the specimen and crack geometries.
However, even in a well-controlled laboratory environment, results obtained from crack growth
experiments under either a constant-amplitude cyclic loading or a given spectrum loading
usually exhibit considerable statistical variability, This is illustrated in Figure 50, which shows
the actual crack growth records of some fastener hole specimens subjected to the excitation of a
specific load spectrum in a laboratory. It is, therefore, not surprising to find that statistical
analyses have been applied quite frequently to such problems in recent years (References 6
through 22).

If we restrict our attention to a laboratory setting so that the loading time-variation is
deterministic, then the mathematical model, Equation (1), can be "randomized" as follows-

driS- Q(K,AK,s,i,R) X(t) (34)

where the additional factor X(t) is a non-negative random process, and ii(t) is a random process
representing the crack length at time t. It is of interest to note that Virkler, Hillberry and Goel
(References 3 and 4) have undertaken simulation studies of crack propagation which amount to
amuming X(t) in Equation (34) to be totally uncorrelated at any two different times. At the
other extreme, Yang (References 1, 22, 17) has replaced the random process X(t) in Equation
(34) with a random variable, which is equivalent to the case where X(t) is totally correlated at all
times. It was pointed out in Reference 1 that a totaily uncorrelated X(t) would lead to the
smallest statistical dispersion and a totally correlated X(t) to the greatest statistical dispersion
for the time at which a given crack size is reached. A nwore realistic modeling of fatigue crack
growth should lie momewhere between the two extremes. Therefore, the ability to account for an
arbitrary correlation in X(t) is a major consideration In the present section.
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Figure 50. Actual Crack Propagation Time-Histories of Some WPB Fastener Holes

From the ztandpoint of fatigue design and schedule maintenance (References 11, 14, 15),

two types of statistical information are of interest: the distribution of the random crack size at

any given time, and the distribution of the random time to reach a given crack size. As shown in

Reference 1, these two problems are interrelated. Attention will be focused on the statistical

properties of the latter problem. In particular, analytical solutions will be given for the

statistical moments of the random time to reach any crack size, given the knowledge of an initial

size. A procedure to estimate the parameters in a power-law mathematical model also will be

presented, using the fractographical results (Reference 23) of some 7475-T7051 aluminum

fastener hole specimens subjected to the excitation of a bomber load spectrum.

1. Model for X(t)

We shall model X(t) as a random pulse train (see Reference 24), i.e.,

X(t) -& Zkw(t,rk) (:g.)
k-1 

"

where N(t) - a homogeneous Poisson counting process, giving the total number of pulses that

arrive within the time interval (-co, t); rk = the arrival time of the kth pulse; Zk = the random

amplitude of the kth pulse, and
1, ~ ~0 < t-i S (6

w(ti) = w(t.r) =(36)

0, otherwise
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We further assume that Zk for different k are independent, identically distributed random
variables, with a common probability distribution Z,

A typical sample function• of X(t) is shown in Figure 51.

7 1 r2 r3 r4
Time, t

FD 2a503r

Figure 51. Typical Sample Function of Random ProcesA X(t)

The 3tatistical properties of X(t) can be described by its cumulant (or semi-invariant)
functions. The ruth cumulant function im given by:

K.JX(t1 ),.,.,X(t.)I - E[Zp],fM " min w(t, - ) .,,w(t. - r)dr

in which E[ ] denotes an ensemble average, X is the average arrival rate of the Poisson process,
and min( ) indicates the smallest of the parenthesized quantities. In particular, the first
cumulant is the mean function, and the second cumulant is the covariance function. These are
found to be:

- EIX(t)] - E-H[ZlXf w(t-r)dr

SIZ]iX fw(u)du - EJZIXA (38)
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and

Cov[X(t,), X(t 2)] E[Z 2pX f'1  w(t, - T)w(t 2 - r)dT

"E[Z'pX f7 w(u)w(t 2  t1 + u)du

I 2 o9(l -At-t/), 
I - , <

_"0' t A.- a,>
• ,,(39)

in which# = E [Z2] XA.

2. Approximation of ! (t) by a Markov Random Proceso

We now re-write Equation (84) as follows:

•r • -- Q(0)i0 + Ylt)
(40)

where the dependence of Q on K, AK, a and R has been suppressed for simplicity. Clearly, Y(t)
is a random process with a zero mean and the correlation function of Y(t) is the same as the
covariance function of X(t); namely,

S2•(1- u/A), H < A
,y EI") - E1Y(t) Y(t+T)] 2( (41)

O, otherwise

A sketch of this correlation function is shown in Figure 52. If the correlation time of Y(t) is short
compared with the characteristic time of N (t), then i (t) is close to a diffusive Markov process
(Reference 25) which is governed by an Ito's stochastic differential equation (Reference 26):

di - m(l,t)dt + u(C,t)dB(t) (42)

where in is called the drift coefficient, Y the diffusion coefficient, and B(t) is a unit Brownian
motion process (also called the Wiener's process), which has the property that dB(t1 ) and dB(t.)
are Independent for t, 0 tg.

Tho correlation time of Y(t) may be defined as follows:

- f ,Rvv(r)l dr
-; car JR-lyT)l d-r (43)

Substitution of Equation (41) into Equation (43) results in ro = A/3.
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Figure 52, Autocorrelation Function of Random Process Y(t)

Strictly speaking, the W (t) process in Equation (42) is ani approximation of that in
Equation (40), and they could be represented more clearly by two different symbols; however,
the same symbol will be used in this report for both processes as long as no confusion will result.

Stratonovich (Reference 25) has given the required formulas to compute the drift and
diffusion coefficients from the original physical equation when the Markov approximation is
justified. In the case of Equation (40)

m -QA + f Q H t t+r d

QY + Q ,,,( Q-(A + #A Q
a (44)

2 f , Q' J Y(t)Y(t + -)Idr 2Q2#4k" '" (45)

where io > A. These equations imply that Q and •iQ/i'a vary slowly within the integration
interval to justify their being taken outside the integrals. Thus, the integrals account basically
for the contribution towards the drift and diffus;1on due to the correlation between the past and
the present "excitations" Y(t). This contribution is lumped at the present, when m and a are
used in Equation (42). The replacement of Equation (40) by Equation (42) amounts to
substituting Y(t) by a white noise. Theoretically, the substitution introduces a small error
associated with a small probability for da to become negative. This error is negligible so long as
the drift dominates the diffusion, which should be verified in each practical case. Stratonovich's
formulas are applicable to other types of correlation functions for Y(t) as long as Q and dQ/da
vary slowly within an interval of r where such a correlation is not negligibly small. In this case,
the lower limit of integration can even be extended to - oo. Stratonovich's method is known as
the stochastic averaging method, originally prop'sed on a physical ground, but later proved
rigorously by Khasminskii (Reference 27) and gwven a rgorous mathematical interpretation,
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The transition probability density qa (a, t I no, to) of the Markov process K (t) is a
conditional probab-Aity density which describes the distribution of1 (t) under the condition that
the initial crack size is A (to) = ao at an earlier time t0. It is governed by the following Fokker-
Planck equation (Reference 26):q4 +.- ai -Q(q)- o

-t a [ q - a (46)

or by the adjoint of Equation (46):
q, 1A [Q(+0, Q -A q+ Q-{-)J~ + Q~/iA-~- (q "- 0

a (47)

subject to the condition,

q.(a,t0 I ao,t,) - h(a-a0)

(48)

In Equation (46) Q is treated as a function of "a" which is a sample ,alue of the crack size R (t),
whereas in Equation (47) it is treated as a function of ao. These equations are also known as the
Kolmogorov's forward and backward equations, respectively,

3. Time to Reach a Given Crack Size

We now focus our attention on the random time when the crack size A (t) reaches a specific
value a,. This event may be considered as the passage for the first time across an absorbing
boundary, Introduce g(a, t I ao, to) such that

g(a, t aIn. t,,)da - Prob Ia : U(t) _- a + da I 0 n Z(T) < ad, to -5 T < tJ,

so -< a < a,, (49)

Although g is similar to q.a it is not a probability density since its integration on a from a0 to a,

is generally smaller than one. In fact, g describes only the sample functions which do not reach
the absorbing boundary al before time t. However, g also satisfies the Kolniogorov backward
equation, Equation (47).

The integration of g yields

CT(t) -. f.",, 04a t I n,,, t,) da

Prob survival in (t,,t) I (tu) na (50)

Here the dependence of G on ao and to has been suppressed. The G(t) function also satisfies the
Kolmogorov backward equation, namely,

G 2

G+Q(M+U - )- G + 0 (U)G
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subject to the following conditions:

G(to) - 1 (52)

G(oo) - 0 (53)

Condition (53) indicates that sooner or later fatigue failure will occur. Letting r - t - to, we
obtain

) .'G + ± Q 2P ALG -0

Tr - 08 0 86a (54)

Now C(t 0) - G(t) - 1 - G(t) is the probability thaqt first passage (reaching the crack size a,)

occurs prior to t, This is the distribution function of the random first passage time T; i.e.,

Foy(r) - 1 - G(to + -) (55)

The probability density of T follows froLr1 a differentiation of Equation (55);

+ 7) (56)

The average first pasage time is

E[T - - fr ý- dr - f:G(to+ 7)dd ()

In obtaining the second part of Equation (57) use has been made of tho condition (53).

Integrating Equation (54) and using Fquations (56) and (67), we obtain an equation for the
average first passage time:

+ Q(A+ A - , E[T] + Q da& E[T] - 0(58)

The above second order equation requires two boundary conditions, one of which is clearly

E[T] - 0, ifa 0 - a, (59)

We shall assume that another condition is

-a-E[T] - 0, if ao- 0 S(60)

Equations for higher order moments can also be derived from Equation (54). Note that

E[Tm ] - - d -- nfi -G(t, + O)dr (61)
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Multiplying Equation (54) by T' and integrating on T, we obtain

(n+ 1)E[T+J + Q + O q-l] EITr + _C 0+(62)

subject to the conditions:

E[T" + 11 . 0, if , - a, (63)

(63)

-Ia- 
4 ~EITI1+ 1] -O0 ifa 0o- 0 (64)

It is clear that Equation (64) which inchldes Equation (60) as a special case implies that a 0 e is
a reflective boundary. Equation (62) can be used recursively to obtain higher moments from the
lower order moments. Equation (62) reduces to Equation (58) when n = 0.

Note that Equation (62) is first order in dE[Ta" ]/daO which can be solved readily. Let Q
Qof(N) where Qo has the unit of length/time and f(.) is a dimensionless function. We obtain

d +!. da0 •
m oE[T " +] " - exP - - f

T e (65)

where

A - 0 #A -Q (66)

in which the common practice of using the same symbol for the integration variable and limit of
integration has been adopted for convenience. This solution satisfies condition (64), Equation
(65) implies that d/d% E[T7+1] is nonpositive or E[TO"+] is non-increasing when the initial crack
size N is increased, which is physically reasonable.

The (n+ 1)th moment of T follows from integration of Equation (65):

""[Tn + 11 - - E[TM + ']dao (67)

which satisfies condition (63).

4. Power-Law Crack Propagation

We now consider a special form for the Q function which has been proposed by several
authors (References 13 through 16):

Q Qo,(/a .) (68)
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aid in the case of backward equations, we have Q = Q0(ao/ag)b, In this case, the integration in

Equations (66) and (67) can be carried out in closed form. Specifically

dao

-•o Qnu, b -i
(69)

where u ao/a.. To compute E[T], we require Jo. From Equation (66) tind with n = 0,

1 [exp k u I.b Hkl-b)], b - 1

Jo -

U k b- I
(70)

ads
where k and H is the Heaviside function, i.e.,

H(i-b) 1, b < (
1/ 0, b > 1 (71)

Equations (69) and (70) are substituted into the expression for dElTI/dao which is then
integrated to obtain E[T]; the results are

(1i-u'-b) 4- H(I-b) ( -)[exp(-

EITi- exp( - k _b) b

(72)

a,: - -Q - - 2 n u , b - 1

To compute E[TI] we require

- , f EiTjd[exP(-- f .3)]
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Substituting Equation (72) into Equation (73), we obtain

01k U - b X b)

+ H(1-b)) [ (___,

- (u- + 1)- b 1 (74)

04s
2

it- U ( 1 nu), b 1 (75)

In obtaining Equation (75), we have used the formula

f: ua.n u du - - fuadu d'J-v

- (a+1) -2x+l[(a+1)Qnx-1] (76)

The second part of Equation (76) tollowa from changing the order of integration.

Substitute Equations (74) and (75), respectively, into the expression for dE[T']/da, and
integrate1

•• - ( + 7-)(1---uI -•H90lE[VI + 1 ) ~(I_ U1- b)(- u 1-b)

2ak 1 I - )+U - b)+k

Inotann Euton (78-ehaeue the'- f-=ormula:" ,.-•-)

-e-'-p (1+ 2 + --L-exp

b I (77)

041

l-aT (78)

In obtaining Equation (78) we have used the formula:

Th fx- R inu du - - fx-'du f'-dv - - -2-nx))u (79)

The second part of Equation (79) follows from an interchange of the order of integration.

5. *stlmetion of Model Parameters

The estimation of the parameters of a mathematical model will be illustrated by use of two
examples. Refer again to Figure 50 which shows the crack propagation time-histories of dome

74

t _________



specimens selected from the fractographical data of 7475-T7351 aluminum fastener holes
a',ailable in Reference 23. The data set is identified as WPB, indicating that the specimens were
drilled with Winslow Spacematric machines (W), with a proper drilling technique (P), and
subjected to a given B-1 bomber load spectrum (B). The data set has been censored to include 9
only those specimens having fatigue crack growth through the crack length interval from 0.004
inch to 0.04 inch (corner crack). This censoring procedure is necessary in order to ndrmalize the
data set to zero life at 0.004 inch, thus obtaining a homogeneous crack growth data base. The
resulting data set consists of 16 specimens. Within a small crack size range, the power-law
propagation, Equation (68), was shown to be valid (References 13 through 17).

The parameters of our mathematical model, specialized to a power-law crack propagation
that fits the behavior of the above WPB specimens, have been estimated using the experimental
data. We began by taking logarithms on the two sides of Equation (68), with Q - Qo(a/a,)b to
yield

da(t)

log dat b log a(t) + log(Q 0/a•) + log X(t)
(8o)

Variations of log d /dt versus log K were plotted for the 16 specimens in the WPB data set as
shown in Figure 53. Implicit in the mathematical model is the assumption that all points would
fall along a single straight line if the random element log X(t) were not present. Since X(t) has
been assumed to be a stationary random process, the mean and the standard deviation of log
X(t) are constants. A linear regression analysis was then carried out to estimate the slope, the
intercept, and the standard deviation of the random element log X(t). The slope is equal to b,
and the intercept is log (Q0/ ab),

The results obtained from the 16 specimensi are

b - 0.92971,

Q0/a. - 1.1051 X 10"4,

•gX(t) =0,087635

The linea~r regression analysis imples that each point in Figure 53 has been treated as an
independent sampling of a Gaussian random variable. Thus, estimates of the mean and variance
of X(t) itself can be computed from those of log X(t), using the log-normal to normal conversion
formulas; namely,

ft- lp P Lp x(t)X 10]j -- 1 -]

S(82)

Application of Equations (81) and (82) resulted in

p - 1.0206, 0,021643
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Figure 53. Regression Analysis for the Estimation of Model Parameters for WPB
Fastener Holes

The rationale behind these conversion rules is the use of linear regression to obtain the mean
and standard deviation for log X(t). It does not necessarily require that X(t) must be log-
normal. In fact, when the crack size 1(t) is treated as a diffusive Markov process in an
approximate sense, the "excitation" process X(t) is also effectively replaced by a constant mean
A plus a Gaussian white noise. Of course, this replacement excitation process cannot be log-
normal.

Having the values of b, Qo, )A and 0, the mean and mean-square values of the time T to
reach a given crack size a, can be computed using Equations (72) and (78) for different values of
k = ajs!(#4Q0), or equivalently for different values of A. Figure 54 shows the results of such
computations, in terms of E[T] and F[T] j± aT, where aT - (E[T'] - E[T] 1)112 is the standard
deviation of T. The mean values E[T] are practically uninfluenced by the choice of A since the
last two terms in Equation (72) are several orders of magnitude smaller than the first term.
However, the statistical dispersion UT increases as A increases. This A--oT relationship agrees
with our earlier observation concerning the results of Yang (References 1, 22), and of Virkler,
Hillberry and Goel (References 3 and 4), the former case being equivalent to A --+ co and the
latter case to A --* 0. Estimates of the mean E[T] and standard deviation, UT, of T were also
obtained directly from the data of the 16 specimens, and the results plotted in Figure 55.
Comparison between Figures 54 and 55 shows that A 8,000 is a reasonable choice for this
particular mathematical model and data set.
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Figure 54. Theoretical Mean and Standard Deviation of Random Time to Reach
Various Crack Sizes Computed for Different A Values for WPB Fastener
Holes
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Figure 55, Mean and Standard Deviation of Random Time to Reach Various Crack
Sises Computed Directly from Some Actual Time-Histories of WPB Fastener
Holes
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Some computer simulated sample functions using the present mathematical model
described in Equations (34) and (35) are shown in Figure 56. These have been obtained using
"parameters O&X- 1.0206, vXr f 0.043286, b = 0.92971, Q0/ah - 1.1051 X 10-4, A = 8,000 and an
average Poisson pulse rate of X f 0.1. Their general characteristics are remarkably similar to the
actual records in Figure 50.

0.04 ,

0.03 ..

IdI.

0.02 " . ' *

0.01

o.0

0 2 4 6 a 10 12 14 16 18 20

Flight Time, t - hr X 103

Figure 56. Simulated Sample Functions of Crcick Propagation Time-Histories for WPB
Fastener Holes

It has been suggested that the distribution of the time T to reach a given crack size a. can
be approximated by a two-parameter Weibull distribution (Reference 1),

FT(t) - PITSt] I - i-exp[-(t/0o)"fO (83)

in which a0 and f0 are, of course, related to the values of E[T] and av. Approximate distribution
functions of T thus computed are shown in Figure 57 as solid curves for a. = 0.01, 0.02 and 0.04
inch, respectively. Also displayed in Figure 57 as circles, triangles and rectangles are the
corresponding distributions of the test results obtained from Figure 50. It is observed from
Figure 57 that on the basis of the approximation, Equation (83), the test results correlate very
well with the present statistical fatigue crack propagation model.

For additional comparison, the above procedure has been applied to another set of data, to
be referred to as XWPB where X signifies a 15% load transfer in the fasteners and WPB has the
same meaning as before. This second data set also has been censored to include only those with
a crack length growth from 0.004 to 0.07 inch, resulting in a total of 22 specimens. The crack

propagation time-histories of these specimens are shown in Figure 58. The linear regression
analysis for the estimation of model parameters, illustrated in Figure 59, resulted in

b = 0.985, Q0/a, - 2.4414 x 10 -, ,x(t) 0.12896
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Figure 57, Comparison Between Weibul-Type Approximation for the Distributions of
Random Time to Reach a Given Crack Size and Actual Test Results for
WPB Fastener Holes

An application of Equations (81) and (82) yielded

1.0451, 6, -0.0503

The computed E[T] ± aT curves for a number of A values are shown in Figure 60. When they
are compared with the specimen mean and specimen standard deviation, shown in Figure 61, the
best agreement is obtained for A - 8000. Approximate distributions of the random times to
a, - 0,008, 0.025 and 0.07, based on a Weibull form, Equation (83), are shown in Figure 62, along
with the sample distributions. Computer generated simnlations using A - 8000 and X = 0.1 are
shown in Figure 63, Again, excellent theoretical end experimental correlations are seen in this
second example.
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Figure 58, Actual Crack Propagation Time-Hiatories of Some XWPB Fastener Holes
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Figure 59. Regression Analysis for the Estimation of Model Parameters for XWPB

Fastener Holes
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Figure 60, Theoretical Mean and Standard Deviation of Random Time to Reach
Various Crack Sizes Computed for Different A Values for XWPB Fastener
Holes
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Figure 61. Mean and Standard Deviation of Random Time to Reach Various Crack
Sizes Computed Directly frow, Sonw Actual Time-Histories of XWPB
Fastener Holes
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Figure 62. Comparison Between Weibull-Type Approximation for the Distribution of
Random Time to Reach a Given Crack Size and Actual Sample Distribution
of XWPF Fastener Holes
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SECTION VII

CONCLUSIONS

1. Spectrum Loading

A fracture mechanics-based statistical model developed in Reference 1 for the prediction
of fatigue crack growth behavior under any single test condition has been extended to the case of
spectrum loading. The distributions of propagation life to reach any given crack size and the
crack size at any specific number of load cycles were obtained. A specific block loading was
chosen and applied to IN100 laboratory test specimens to obtain statistically meaningful crack
propagation test data for the verification of the statistical model. The same block loading was
used for the theoretical prediction of the crack propagation behavior of IN100 baaed on the
model, Comparison of the theoretical results with the verification test data indicated a
reasonable correlation. The model provided conservative predictions of both the mean behavior
and the variability of the data. Thus, the proposed fracture mechanics-based statistical model is
quite practical, since it requires only a small nonhomogeneous data base for predicting crack
propagation under spectrum loading. Crack growth retardation or acceleration effects due to the
applied spectrum (temperature, loading) must be addressed in further work on this model.
However, the theoretical model is judged appropriate for practical applications due to its
simplicity and conservative predictions.

2. Related Developments

A statistical model based on the Paris crack growth rate function for fatigue crack growth
in IN100 was investigated and applied to test results at various temperatures, loading
frequencies, and stress ratios, Again, the distributions of life to reach any specific crack size and
the crack size at any specific number of cycles were obtained. Homogeneous test environments
were assumed to avoid excessive extrapolation into the region where crack growth data did not
exist, The life integration was then based on the best-fitted crack growth rate parameters. This
approach was necessary in order to obtain the homogeneous data sets, referred to as the
extrapolated test results, for the correlation study,

The correlation between the statistical model and the extrapolated test results was
reasonable, Care should be taken in the application of this model as the Paris crack growth rate
function is applicable only to a certain region of the stress intensity range. This model is
mathematically simple and practical for engineering applications.

Closed form solutions have been obtained for the statistical moments of the random time
when a dominant crack reaches a given size for a rather general class of crack growth
mechanisms. The key to this success was the approximation of the random crack size by a
diffusive Markov process. Theoretically, the approximation introduced an error associated with
the possibility for the crack propagation rate to be negative at times. However, in terms of
statistical properties, the error was negligible if the tendency for drift dominates the tendency
for diffusion. The application of the proposed theory to two real examples seemed to
substantiate our contention. The theoretical results have been shown to correlate well with the
experimental results when the parameters for the mathematical model were obtained from a
linear regression procedure, Since the calculation of a few key parameters using such a
procedure dose not require a very large data base, the proposed theory is quite practical in view
of the limited experimental results available at the present time.
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